
SwingML Custom Event Handlers

Developer’s Tutorial

Robert J. Morris

CRC Press LLC

April 2003

Introduction... 3

The EXTERNAL-ACTION Tag... 3

Writing a Custom Event Handler.. 4

initialize().. 5

invoke() ... 6

destroy() .. 6

A Simple Event Handler ... 6

The RetainedInMemory Interface... 7

The EventUtil Class .. 9

getRenderer() .. 9

getComponent() .. 9

Introduction
This document explains how to extend the standard SwingML event handling mechanism using the InvokableEvent interface. The

standard method for invoking functionality in the SwingML specification is to use the <ACTION> tag and specify an object, its method,

the types of the method’s parameters, and then the corresponding values. This is illustrated in Listing 1.

Listing 1: An example of the ACTION tag

<PANEL NAME=”mainPanel” LAYOUT=”BorderLayout”>

<TEXTFIELD NAME=”aTextBox” TEXT=”” COLS=”10” ORIENTATION=”North”/>

<BUTTON NAME=”aButton” TEXT=”Press Me” ORIENTATION=”South”>

 <LISTENER EVENT=”ActionListener.actionPerformed”>

 <ACTION

 COMPONENT=”aTextBox”

 METHOD=”setText”

 TYPES=”String”

 VALUES=”Hello, World”/>

 </LISTENER>

</BUTTON>

</PANEL>

The example outlined in Listing 1 sets the displayed text in the TEXTFIELD object identified as aTextBox to “Hello, World”. This

mechanism is very useful for single function calls. However, it becomes readily apparent that this mechanism does not satisfy every

programming need. For this reason, the EXTERNAL-ACTION tag was designed to provide a means for programmers to “plug in” their

own event handling mechanisms.

The remainder of this document explains the EXTERNAL-ACTION tag as well as the means by which a programmer may implement

custom event handlers.

The EXTERNAL-ACTION Tag
The EXTERNAL-ACTION tag, like the ACTION tag resides within a LISTENER tag. This tag allows a SwingML coder to specify a

component that provides the custom event handling functionality. Listing 2 provides an example of this kind of functionality.

Listing 2: An example of the EXTERNAL-ACTION tag
<PANEL NAME=”mainPanel” LAYOUT=”BorderLayout”>

<TEXTFIELD NAME=”aTextBox” TEXT=”” COLS=”10” ORIENTATION=”North”/>

<BUTTON NAME=”aButton” TEXT=”Press Me” ORIENTATION=”South”>

 <LISTENER EVENT=”ActionListener.actionPerformed”>

 <EXTERNAL-ACTION

 COMPONENT=”aTextBox”

 EXTERNAL-CLASS=”com.mycompany.event.MyWidget”/>

 </LISTENER>

</BUTTON>

</PANEL>

As illustrated in Listing 2, The EXTERNAL-ACTION tag requires a reference to another component within the current document, in this

case the aTextField object. It also requires the fully qualified path name of a Java class. The reference class must implement, at least, the

org.swingml.event.InvokableEvent interface. This provides instances of the referenced class the necessary methods to be invoked properly

by the SwingML event handler. The details of the InvokableEvent interface will be explained later in this document. For now, suffice it to

say that pressing the button invokes the functionality contained within the com.mycompany.event.MyWidget class.

It’s also possible to specify parameters for an EXTERNAL-ACTION tag beyond the required COMPONENT and EXTERNAL-CLASS

attributes. To provide additional parameters to an EXTERNAL-ACTION, you use the ACTION-PARAM tag. The ACTION-PARAM tag

only requires a NAME attribute. The NAME of an ACTION-PARAM does not need to be unique within the SwingML document (it’s not

an ID). The other attribute is VALUE which contains the value of the parameter. Optionally, the ACTION-PARAM tag can also contain

its value rather than specify it in the VALUE attribute. This is illustrated in Listing 3.

Listing 3: An example of the ACTION-PARAM tag
<PANEL NAME=”mainPanel” LAYOUT=”BorderLayout”>

<TEXTFIELD NAME=”aTextBox” TEXT=”” COLS=”10” ORIENTATION=”North”/>

<BUTTON NAME=”aButton” TEXT=”Press Me” ORIENTATION=”South”>

 <LISTENER EVENT=”ActionListener.actionPerformed”>

 <EXTERNAL-ACTION

 COMPONENT=”aTextBox”

 EXTERNAL-CLASS=”com.mycompany.event.MyWidget”>

 <ACTION-PARAM NAME=”turn-on” VALUE=”0”/>

 <ACTION-PARAM NAME=”display-text”>

 <![CDATA[

 This is some additional text to display as part

 of this custom action.

]]>

 </ACTION-PARAM>

 </EXTERNAL-ACTION>

 </LISTENER>

</BUTTON>

</PANEL>

If you examine listing 3, you’ll notice that two ACTION-PARAM tags were added to our SwingML code from the previous example. The

first ACTION-PARAM uses the VALUE attribute to specify the value of the parameter. The second ACTION-PARAM encloses a

CDATA block. The CDATA block (<![CDATA …]]>) allows the ACTION-PARAM to contain any kind of text including XML reserved

characters like < and >.

These values are supplied to the com.mycompany.event.MyWidget class when it is invoked.

This is all that’s required to place a reference to a custom event handler from the SwingML perspective. The next section will examine the

interfaces you need to implement to successfully create a custom event handler Java class.

Writing a Custom Event Handler
In the previous section, we placed a reference to the com.mycompany.event.MyWidget Java class. Obviously, in order for this SwingML to

work, we need to create the class that the SwingML EventHandler ultimately invokes. Before jumping into the code, however, we should

examine the architecture of the SwingML Custom Event Handler.

Figure 1: Custom Event Architecture

As illustrated in figure 1, The MyWidget class is a subclass of the org.swingml.event.EventUtil class. This utility class provides standard

functionality that facilitates the creation of new Event handlers. There is no need to derive your class from EventUtil. The MyWidget class

also implements the InvokableEvent interface and the RetainedInMemory interface. The InvokableEvent interface is required for SwingML

to use a class as an event handler. The RetainedInMemory interface tells the SwingML EventHandler mechanism how to manage the life

span of MyWidget instances.

The code for the InvokableEvent interface is illustrated below.

Listing 4: The InvokableEvent interface
public interface InvokableEvent

public void initialize(Component component, Object[] params);

public void invoke();

public void destroy();

Each of these methods is explained below:

initialize()

This method provides an initialization routine for an InvokableEvent implementation. This method is called upon every invocation,

regardless of whether or not the implementation is retained in memory (This will be explained in the section regarding the

RetainedInMemory interface).

The component parameter is a reference to the component specified in the EXTERNAL-ACTION tag's COMPONENT attribute. The

params parameter provides an array of ActionParamModel objects. These are best handled by the EventUtil.buildParamMap method which

returns the array as a Map object where the name of the ACTION-PARAM is the key into the map.

invoke()

This is the “body” of the event handler. Once the necessary parameters for the event have been established within the initialize()

method, the invoke() method performs the actual work of the event handler.

destroy()

destroy() method releases any persistent, allocated resources like opened file streams, network connections, or database connections.

A Simple Event Handler

At the very least, a custom event handler must implement the InvokableEvent interface. The code for such a class could look like listing

Listing 5: MyWidget implementing InvokableEvent
package com.mycompany.event;

import org.swingml.event.*;

import org.swingml.component.*;

public class MyWidget extends EventUtil implements InvokableEvent

private Map m_params;

private Component m_component;

public void initialize(Component component, Object[] params)

{

 this.m_component = component;

 this.m_params= super.buildParamMap(params);

}

public void invoke()

{

 ((JTextFieldComponent) component).setText(this.m_params.get(“MESSAGE”));

 if (((JTextFieldComponent) component).getText().length() % 2 != 0)

 {

 component.setVisible(false);

 }

 else

 {

 component.setVisible(true);

 }

}

public void destroy()

{

 // nothing to do.

}

There’s not much to the example in listing 5. The initialize() method takes the supplied parameters and packages them for future use by

invoke() method. The invoke() method simply takes the referenced component, and calls its setText() method using the value of the

“MESSAGE” parameter. The destroy() method has nothing to do. There is no bullet-proofing in this code and there are a lot of opportunities

for run-time failures. However, the basic idea is still there. A custom event handler is initialized, invoked, and then destroyed. The

sequence of calls between the EventHandler class and the MyWidget class looks like figure 2.

Figure 2: Custom Event Handler Interaction

This discussion has involved only the implementation of the InvokableEvent interface. The RetainedInMemory interface and the problem of

object lifetime will be addressed in the next section.

The RetainedInMemory Interface
When the SwingML EventHandler class encounters a reference to a custom event handler, it must performs the following actions:

 Load the class

 Create an instance

 Initialize the instance

 Invoke the instance

 Destroy the instance

Steps 3 through 5 were discussed in the previous section. Steps 1 through 2, however involve the actual task of creating the instance of the

custom event handler. That’s where the RetainedInMemory interface and the ExternalEventManager figure in. The EventHandler class uses

ExternalEventManager to create every instance of a custom event handler. The ExternalEventManager first tries to find a reference to

the fully qualified class name in its object cache. If one does not exist, it loads the class and checks to see if it implements the

RetainedInMemory interface. If the object does not implement RetainedInMemory, it simply returns the new instance. If the object does

implement the RetainedInMemory interface, it queries the RetainedInMemory.retainInMemory() method to determine how to cache the

object. Once the object has been cached, it returns the instance.

There are currently three levels of retention provided by the ExternalEventManager. These constants are exposed by the RetainedInMemory

interface:

 MEM_GLOBAL – When the class is first instantiated, the new instance remains cached until the entire SwingML system shuts

down.

 MEM_DOCUMENT – When the class is first instantiated, it is attached to an instance of the SwingMLRenderer class. Whenever

the SwingMLRenderer instance redraws a document (render() or submit()) or if it goes out of scope, the associated object cache is

flushed using the ExternalEventManager.flush(SwingMLRenderer renderer) static method.

 MEM_VOLATILE – This is just like not implementing the RetaindInMemory interface at all. This gives the programmer the

opportunity to say emphatically to anyone who may wish to subclass an event handler DO NOT CACHE AN INSTANCE OF THIS

CLASS IN MEMORY.

Our previous example in listing 5 could be extended so that each instance is retained in document-level memory. This is illustrated in

listing 6.

Listing 6: MyWidget with RetainedInMemory
package com.mycompany.event;

import org.swingml.event.*;

import org.swingml.component.*;

public class MyWidget extends EventUtil implements InvokableEvent, RetainedInMemory

private Map m_params;

private Component m_component;

public void initialize(Component component, Object[] params)

{

 this.m_component = component;

 this.m_params = super.buildParamMap(params);

}

public void invoke()

{

 ((JTextFieldComponent) component).setText(this.m_params.get(“MESSAGE”));

 if (((JTextFieldComponent) component).getText().length() % 2 != 0)

 {

 component.setVisible(false);

 }

 else

 {

 component.setVisible(true);

 }

}

public void destroy()

{

 // nothing to do.

}

public int retainInMemory()

{

 return RetainedInMemory.MEM_DOCUMENT;

}

The bold-faced code represents the only new text added to the previous example. The new retainInMemory() method only returns the

value of RetainedInMemory.MEM_DOCUMENT. This flag indicates to the ExternalEventManager that this instance should be associated with the

current SwingMLRenderer instance and cached for the lifetime of its current document.

The EventUtil Class
As stated earlier, it is not necessary to extend the EventUtil class when creating your custom event handler. However, the protected utility

functions it provides can be very useful. Of greatest import are the getRenderer() method and the getComponent() method. Both of these

provide convenience methods for retrieving named components within the current SwingML hierarchy.

getRenderer()
public SwingMLRenderer getRenderer(Component component)

This class will take the component reference (this is usually the one provided by the component parameter in the

InvokableEvent.initialize() method) to “climb” the object tree back to the SwingMLRenderer root. The component parameter must be the

part of a SwingML document tree or this method will return null.

getComponent()
public Component getComponent(Component component, String name)

This method takes the component reference (this is usually the one provided by the component parameter in the

InvokableEvent.initialize() method) to “walk” the object tree to find the object whose name matches the string specified by the name

parameter. The component parameter must be a part of a SwingML document tree or this method will return null.

